

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

A HIGH-PERFORMANCE RECONFIGURABLE FABRIC FOR
COGNITIVE INFORMATION PROCESSING

Cornell University

DECEMBER 2010

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2010-211

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2010-211 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

THOMAS E. RENZ EDWARD J. JONES, Deputy Chief
Work Unit Manager Advanced Computing Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DECEMBER 2010
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

July 2007 – September 2010
4. TITLE AND SUBTITLE

A HIGH PERFORMANCE RECONFIGURABLE FABRIC FOR
COGNITIVE INFORMATION PROCESSING

5a. CONTRACT NUMBER
FA8750-07-2-0191

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
459T

6. AUTHOR(S)

Rajit Manohar

5d. PROJECT NUMBER
AC

5e. TASK NUMBER
CU

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
373 Pine Tree Road
Ithaca NY 14850-2820

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-211

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88 ABW-2010-6251

Date Cleared: 29 November 2010

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Cognitive systems have requirements that are not met by existing commercially available architectures such as multi-core
microprocessors or reconfigurable logic. In collaboration with Air Force Research Laboratory (AFRL), this project had the goal of
creating a hybrid architecture that combines an existing power efficient AFRL design with an asynchronous high performance
reconfigurable fabric. A new reconfigurable fabric was created with a number of unique features, including support for low leakage
operation via power gating, additional hardware support for dynamic reconfiguration, and features that enable virtualization of the
configuration memory of the fabric. A chip was created in collaboration with AFRL that included an AFRL system design and the
new asynchronous fabric and submitted for fabrication through the Trusted Foundry Access Program.

15. SUBJECT TERMS
Asynchronous Field Programmable Gate Array, High Performance Computing, Trusted Design, Fast FPGA, System on a Chip,
Multi Node System

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

27

19a. NAME OF RESPONSIBLE PERSON

THOMAS E. RENZ

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents

1. Introduction ... 1

2. Methods and Procedures.. 2
2.1. Asynchronous FPGA Concepts... 2
2.2. Asynchronous FPGA Software ... 5
2.3. Dynamic Reconfiguration with Meta Bits .. 6
2.4. Synchronous Interface Design .. 7
2.5. Tool Chain for Design Mapping ... 8
2.6. Partially Automated Physical Implementation .. 9

3. Results and Discussion ... 9
3.1. New AFPGA Core Architecture ... 9
3.2. Dynamic Reconfiguration Ability ... 12
3.3. AFPGA Configuration Memory and Security .. 13
3.4. AFPGA Interface Circuits ... 15
3.5. Circuit Changes ... 15
3.6. Physical Implementation ... 16

4. Summary ... 19

5. References ... 20

6. Acronyms ... 22

ii

List of Figures

Figure 1. Island-style FPGA Architecture. ... 2

Figure 2. Building Blocks for Dataflow Computation.. 3

Figure 3. Dataflow translation of a straight-line program. ... 5

Figure 4. Translation of conditional execution into a dataflow graph. 6

Figure 5. Original AFPGA Logic Block. .. 10

Figure 6. Logical configuration of the core of the new AFPGA logic block. 10

Figure 7. Internal connectivity provided by the AFPGA logic block. 11

Figure 8. An example of supported routing re-configuration in the AFPGA. 12

Figure 9. Basic two-flop synchronizer. ... 15

Figure 10. Screenshot of the pandR layout assistant. ... 17

Figure 11. Physical layout of an arrayable tile of the new AFPGA. 18

1

1. Introduction

There are two major computation platforms that have survived the test of time when it
comes to a combination of efficiency and programmability: the microprocessor, and the
Field Programable Gate Array (FPGA). Microprocessors are designed to implement a
von Neumann abstraction of computation, where the computation is specified using a
sequence of instructions that specify how the state of the system is to be modified. High-
level languages are translated into these instruction sequences using a compiler, hiding
the complexity of the detailed instructions from a user of such a system. FPGAs are
designed to implement hardware described using combinational logic and state holding
elements. The hardware itself is described using a high-level hardware description
language, and logic synthesis tools are used to translate the description into the
appropriate configuration information for the FPGA. Both these approaches translate a
static, functional description of a computation into a static, physical implementation that
implements the computation.

Cognitive systems, on the other hand, exhibit properties that are more of a dynamic
nature. They learn from their mistakes, and repetition makes them more proficient at
performing a particular task. A microprocessor-based approach with storage that captures
learnt information was a natural way to perform such computations, and this approach
has been widely adopted by the artificial intelligence community. However, traditional
cognitive algorithm implementations on conventional microprocessor-based platforms
require large amounts of memory, and have high input/output and communication
requirements. Mainstream industry has moved to multi-core platforms, but even these
platforms do not support efficient cognitive computing [1].

The human brain provides an existence proof of a highly efficient platform for cognitive
information processing. This platform is very different from current computing
architectures. Salient features of the platform that are a departure from conventional
thinking include the lack of separation between computation and storage, and the
importance of connectivity between components that can dynamically evolve over time
based on the computation being performed. These properties more closely resemble
FPGAs, rather than conventional microprocessors.

Structural information about the way in which the computation is organized is not
captured in a microprocessor-based approach. Another limitation comes from the
observation that storage and computation are physically separate in a microprocessor,
whereas all evidence points to integrated storage and computation in neural systems.

This report contains a summary of the work that was conducted in creating a platform
that was more suitable for cognitive computing tasks. The platform consists of a hybrid
between a microprocessor and FPGA, with additional features in the FPGA that support
cognitive computing tasks. As part of this effort, the features introduced in the platform
have properties suitable for implementing certain hardware security features as well.

2

2. Methods and Procedures

The Cornell Asynchronous Very Large Scale Integration (VLSI) and Architecture group
previously developed a high-performance FPGA fabric for general-purpose computing.
Compared to the state-of-the-art commercial FPGAs from industry, the performance of
the fabric was three to five times higher—a significant improvement. Compared to the
best previously developed asynchronous FPGAs, the Cornell FPGA was almost twenty
times faster in terms of application throughput [2,3,4]. This dramatic performance
increase makes the fabric ideally suited to be integrated into a system containing a high-
performance microprocessor.

2.1. Asynchronous FPGA Concepts

In terms of the major building blocks, the
asynchronous FPGA (AFPGA) architecture looks
like a traditional synchronous island-style FPGA
such as a Xilinx Virtex [5]. The FPGA contains a
configurable logic block (LB), a configurable
interconnect (SB), and connection boxes (CB) that
are used to connect the interconnect to the logic
blocks. Figure 1 shows a high-level view of a
generic FPGA architecture.

The major differentiating feature of the AFPGA
versus a conventional FPGA architecture is the
underlying computation model used to implement
the configurable fabric. Instead of thinking of
computation in terms of gates and registers, the
AFPGA implements a computation specified by a dataflow graph [6]. In the dataflow
graph model, computation is described by operations on data values or “tokens” flowing
through the graph. Tokens correspond to valid data items being processed by elements of
the dataflow graph. Nodes in the dataflow graph include function blocks that can perform
computation, as well as routing elements for sending tokens to the appropriate
destinations. Token arrival at a dataflow node can be thought of as an “event” that
triggers activity in the AFPGA.

Dataflow computations can be implemented in a variety of ways. The AFPGA uses a set
of basic building blocks for dataflow computations based on over ten years of experience
designing both high-performance asynchronous microprocessors as well as low power
asynchronous microprocessors. In designing these complex systems, it was found that
there were only a few circuit topologies that led to efficient implementations. These are
summarized below, and described briefly. The key building blocks are shown in Figure 2,
and their functionality is summarized as follows:

Figure 1. Island-style FPGA Architecture.

3

 Function. The function block has N inputs and one output. This is the basic logic
computation element. It receives a data token from each of its inputs, computes a
function of the received input data, and produces the value as an output token.

 Source. A source produces a stream of constant tokens on its output.

 Sink. A sink consumes any tokens it may receive on its input.

 Copy. A copy is used to implement the equivalent of signal fanout. It replicates
every input token it receives on all of its outputs.

 Initial. An initial block begins by producing a token on its output, and then after
that simply copies any input token it receives to its output.

 Merge. The merge block is a conditional block. It receives a data token from its
control input (shown as a horizontal arrow above). The value of this data token is
used to select an input port. The input data on the selected input port (vertical
arrows) will be sent to the output. No other input tokens are consumed.

 Split. The split block is the dual of a merge. It receives a data token from its control
input (shown as a horizontal arrow above). The value of this data token is used to
select an output port. The input data value (vertical arrow) will be sent to the
selected output port.

Arbitrary computations can be constructed from these basic building blocks [6,7]. The
logic block for the FPGA contains all the necessary components to implement any
dataflow computation. In particular, it contains programmable implementations of all the
dataflow elements shown above.

As an example, the function element is implemented using a programmable four-input
lookup table (LUT). Such a dataflow LUT waits for valid data tokens to arrive on all of
its inputs, and then produces a new data token on its output based on the truth-table
configuration of the LUT. Other support logic such as fast carry-chains and multiplier

Figure 2. Building Blocks for Dataflow Computation.

4

support operate in a similar fashion.

The key performance amplifier in the AFPGA is its flexible routing network. A
conventional FPGA has over 70% of its delay in the routing network [8]. Since the
AFPGA operates using a dataflow model, pipeline stages corresponding to queues can be
introduced into the routing network without impacting the correctness of the computation
being performed by the AFPGA! This means that designs can benefit from pipelining
without the additional cost required from electronic design automation (EDA) tools to
support interconnect pipelining. In the first AFPGA implementation, pipelined stages
were introduced in the switch boxes in the AFPGA interconnect [2,3].

The asynchronous nature of the fabric and the deeply pipelined implementation implies
that only local paths limit AFPGA performance. For instance, even though the
interconnect is configurable, it is impossible to create a path that contains a large number
of switches as in a conventional FPGA because all such paths are partitioned by the
presence of pipelining in the switch boxes. This is a dramatic difference from a
conventional FPGA, where long paths through the routing network that have multiple
switches and buffers are usually on the critical path [8]. The net effect is that the critical
path limiting the peak frequency of the AFPGA corresponds to the lookup table access
rather than the routing network.

The nature of the pipelined interconnect makes the entire AFPGA highly modular. In
particular, because communication between components on the AFPGA uses the
dataflow model, the delay of the communication link is not part of the interface
specification. This enables a highly modular approach to the design of the AFPGA,
where sub-blocks can be pre-placed without significantly impacting performance. Indeed,
if data flow between one sub-block and another is unidirectional (as in a computation
pipeline), there is no loss in throughput by using a modular approach to synthesis and
place-and-route.

The impact of aggressive pipelining on the overall performance of the AFPGA is
significant. In a 0.18µm feature size, the measured peak performance of the AFPGA
architecture was 674 MHz. For reference, the baseline Xilinx architecture in a similar
feature size performs at 240MHz [4]. More important, first pass synthesis results for a
variety of benchmarks demonstrate robust performance. For example, a synthesized
Finite Impulse Response (FIR) filter core would exhibit a performance of 75% of the
peak performance of the AFPGA.

The only real source of performance loss in the AFPGA arises due to data-dependent
loops in the computation graph. To illustrate this, consider a loop in a synchronous circuit
that has a logic depth of d seconds, and contains k registers. The design cannot operate at
a throughput that exceeds k/d, simply because there aren’t a sufficient amount of registers
on the loop to exceed that performance. This is a fundamental or “algorithmic” limit of
the design. The AFPGA is constrained by this limit, and we have found that in practice
the AFPGA can achieve a performance that is close to 80% of the algorithmic limit or
higher.

5

2.2. Asynchronous FPGA Software

In addition to hardware, an FPGA platform requires significant software development. In
particular, design automation tools that take computations described in some language,
map them to the FPGA architecture, and then generate the configuration bits required for
the FPGA must be provided for an FPGA to be usable. This task is broken down into
three major steps.

Logic Synthesis. The first step in the software flow is logic synthesis. In this step,
arbitrary computations are specified in a language that resembles a concurrent version of
the C programming language. This description is converted into a dataflow
implementation using a new compiler representation called “static token form.” Wide
datapath operations are broken down into bit-level operations, and various standard logic
optimizations are performed on the dataflow graph.

Logic Packing. In this step, the dataflow elements are clustered to match the logic
structure in the programmable logic blocks in the asynchronous fabric. This improves the
logic utilization of the overall design.

Place and Route. For placement and routing, an open-source place-and-route tool known
as “vpr” (for versatile place and route) developed by the University of Toronto can be
used. The output of this process is converted into a configuration file to match the
interconnect topology of the AFPGA architecture.

The key new step in logic synthesis is illustrated below, by
describing a simple computation and how it is implemented using a
dataflow graph. As a first step, consider straight-line programs that
do not have any conditional execution. The program below shows a
simple computation where two different functions are computed.

a:=RECV(A); b:=RECV(B);   x:=f(a,b);  
SEND(x,X);   x:=g(a,b);   SEND(x,Y);

The inputs are received on ports A and B, and two values f(a,b)
and g(a,b) are transmitted on output ports X and Y respectively.
The static token form representation was used as a systematic way
to translate the computation described in a high-level language into a dataflow graph.
This representation matches the requirements for hardware implementation of dataflow
graphs, and the use of this representation provides a simple mechanism for mapping
designs to dataflow elements. This approach has been automated, and the net effect is the
creation of the dataflow graph shown in Figure 3 [9].

Figure 3. Dataflow

translation of a

straight-line program.

6

While in this particular case, the
dataflow graph may be “obvious”,
it should be stressed that the static
token form approach is a
systematic and automated method
to generate this graph from the
computation.

The translation is more
complicated when we have
conditional execution. Figure 4
below shows an example of a
program with an if-statement and
its corresponding dataflow graph.
In this case, the value of a is used
either to compute f(a) or g(a)
depending on the value of another

variable b. To implement this functionality, special split and merge dataflow elements are
introduced. These elements are used to route the data to the appropriate function, and
then to collect the result and transmit it on the primary output of the block. The dataflow
building blocks in Figure 2 are sufficiently expressive so that any program can be
implemented using those blocks.

The Defense and Advanced Research Projects Agency (DARPA) supported the work
described above as part of the Architectures for Cognitive Information Processing (ACIP)
program [10]. The research results provided an improvement in programmable logic
performance that was sufficient to launch a commercial enterprise, namely Achronix
Semiconductor Corporation.

The work described above provides the technology basis for a high-performance FPGA
fabric. The goal of the funded effort was to transition this technology into an Air Force
Research Lab (AFRL) design to be fabricated through the Trusted Foundry program.
Although the basic principles of operation of the AFPGA were known, there were a
number of changes required to meet AFRL requirements and for cognitive computing in
general.

2.3. Dynamic Reconfiguration with Meta Bits

The AFPGA was designed as a static architecture, just like most commercial FPGA
designs. However, dynamic re-configurability was a requirement for two major reasons:
(i) FPGAs have significant area overhead due to their flexibility [11]. Even the largest
commercially available FPGAs are too small to accommodate sophisticated software
applications. It is important to be able to time-multiplex the FPGA area for different
functions based on evolving application requirements. (ii) Dynamic re-wiring seems to be
an important property of cognitive architectures. It was important for the AFPGA to be
able to support this functionality. There are a number of technical difficulties that arise

Figure 4. Translation of conditional execution into a dataflow

graph.

7

when creating an AFPGA architecture whose configuration can be dynamically changed.
These arise due to two kinds of dynamic configuration changes: (i) Using available real-
estate for new computations; (ii) Modifying existing real-estate based on new
information.

Configuration information in an AFPGA can be treated as a large on-chip memory block.
Executing write operations to the configuration memory of the AFPGA can modify bits
of configuration. Adding additional mapped designs to the AFPGA while part of the

AFPGA is being used for a different function is a challenging task, because it requires
fine-grained addressability of all the configuration bits. Unfortunately, introducing bit-
level addressing capability for configuration memory is impractical because it has a large
impact on the area of the AFPGA design.

The method used to eliminate the area overhead was to introduce a set of meta-

configuration bits throughout the AFPGA fabric. These meta-configuration bits can be
used to write-protect parts of the AFPGA configuration memory. The meta-configuration
bits are designed so that they control access to configuration information for logically
coherent sections of the AFPGA fabric. For example, one bit controls access to all the
configuration information required for LUTs in a logic block since it is expected that
these LUTs would be grouped together for purposes of reconfiguration. Meta-
configuration bits can also be used to partially modify an existing configuration. Once
again, the meta-bits are used to select the section of the design to be updated. The bits
serve as a selection mask at a granularity that is appropriate for AFPGA reconfiguration.

The introduction of meta configuration bits enables both dynamic configuration
modalities, and the overall area impact of this additional information was found to be
approximately 1%.

2.4. Synchronous Interface Design

An AFPGA expects asynchronous protocols on its inputs and outputs. However, most
complex designs implemented with commercial design automation tools are clocked. One
of the requirements for the AFRL project was to create a clocked interface to the AFPGA
architecture.

The method used for interface purposes was to modify the traditional input-output (I/O)
interface ring of the AFPGA with synchronous register-based ports. These I/O ports can
be configured as special registers that can be externally read (output registers) or written
(input registers) by the processor. When an input register is written by the external entity,
the value stored in the register is injected into the AFPGA fabric as a dataflow token;
when an output register is read by the external entity, the current value of the output
register is transferred to the external entity and the value of the output register can be
updated by the AFPGA on the following cycle.

The input register behaves as a one-place queue, and because the AFPGA fabric is fast
and heavily pipelined, the expectation is that there will be no stalls during typical
AFPGA operations. The output register also behaves like a queue, but it has an extra bit

8

(visible as a separate special register) to indicate if there is valid data present or not. The
external entity can either check this bit and wait for it to be valid before reading the
output register, or know (by timing analysis of the logic mapped to the AFPGA) when it
is safe to read the output relative to the time at which the input was provided. On a read
of the output register (assuming the valid bit was set), the valid bit is automatically
cleared, and only then can the output register be updated with the next value from the
AFPGA. Since the pipelined AFPGA fabric implicitly queues data throughout the fabric,
it is expected that no additional queue space will be necessary for the input/output
registers. The input/output registers and valid bits are visible externally, and can be read
or written in the usual way. These registers also contain a conventional synchronizer
circuit to hide the asynchronous/synchronous boundary [12, 13].

These interfaces were designed in collaboration with several researchers at AFRL, so as
to ensure that the AFPGA could communicate with the AFRL design in a manner that
met the requirements for the larger AFRL project.

2.5. Tool Chain for Design Mapping

Previous work in developing a software tool chain for mapping designs to the AFPGA
was based on translating a high-level asynchronous design entry language into a
configuration bit-stream [8]. This tool flow, while efficient, uses a design entry language
that is not used outside the asynchronous design community. To make the AFPGA
accessible to hardware designers that have experience with commercially available
design tools, the project also created a new tool flow based on commercial design entry
languages such as Verilog and VHDL (Very High Speed Integrated Circuit Hardware
Description Language).

Commercial tools for logic synthesis create a clocked gate-level netlist from a Verilog or
VHDL description. Companies such as Synopsys, Mentor Graphics, and Cadence have
developed these tools over decades. The method adopted by this project was to leverage
this investment and convert the output of commercial synthesis tools into a form suitable
for mapping to the AFPGA architecture.

The design flow for the new tool chain operates as follows:

 Synthesize the Verilog or VHDL description using a commercial synthesis tool.

 Use the open source abc package to map the output of the synthesis tool into
look-up tables of a fixed size (4-input lookup tables for the AFPGA).

 Clean up the output of abc using a simple line-based script.

 Use the open source vpr package to place and route the AFPGA.

 Translate the output of vpr into the correct value of all the configuration bits for
the AFPGA.

9

This approach leverages commercial synthesis tools and existing designs described using
popular commercial hardware description languages [14].

2.6. Partially Automated Physical Implementation

The implementation of the AFPGA required significant effort from a physical design
standpoint. Cornell has developed a number of tools for the logical implementation of
high-performance asynchronous logic circuits. These tools were leveraged in the creation
of the new AFPGA architecture.

The tools use a hierarchical, type-safe design entry language called “ACT” (for
Asynchronous Circuit Tools). The design entry language uses an abstract representation
of transistor pull-up and pull-down networks to specify every gate in the circuit that
implements the AFPGA. Transistor sizes can also be specified in the language, and the
entire language is automatically converted into a Simulation Program with Integrated
Circuit Emphasis (SPICE) format for both transistor-level simulation and physical layout.

To simplify the physical layout procedure, part of the work conducted on this project was
to develop a tool called “pandR” (for “place and route”) whose input is in SPICE
format. This tool is user-guided, and contains support for automating some of the tedious
manual layout tasks. The tool is also aware of the physical design rules for the
technology, and respects these design rules to the extent possible. This tool was used to
accelerate the physical implementation process. In addition, standard layout editors were
used to complete the physical layout.

3. Results and Discussion

The physical design of the AFPGA layout was completed in IBM’s 65nm LP process
(10LP) available through the Trusted Foundry Access Program. The AFPGA was
designed as an intellectual property (IP) block with the appropriate design files so that it
could be integrated with AFRL’s system design in the same way as third-party IP blocks
such as phased locked loops, high-speed serial interfaces, memories, etc. are integrated in
commercial design flows. AFRL submitted the chip for fabrication through the Trusted
Foundry Access Program.

3.1. New AFPGA Core Architecture

Based on prior AFPGA design experience, a number of changes were made to the
architecture of the AFPGA logic block. These changes were accompanied by
corresponding changes to the software tool flow to support the new logic block
architecture.

10

The original AFPGA resembled the logic block architecture of a Xilinx Virtex series
FPGA [5]. The core computation block was a four-input lookup table, which has
previously been shown to be a good compromise between performance and area-
efficiency. The logic block also contained hardware support for fast ripple carry adders
via both additional logic and a dedicated routing path for fast carry chains that bypassed
the general-purpose routing network. In addition, multiplier support was provided
through a programmable AND gate. Figure 5 shows the detailed block diagram of the
original AFPGA architecture [3].

There were a number of limitations of this
architecture that were remedied in the new
AFPGA design. First, the logic block architecture
in Figure 5 contains a single four-input lookup
table. While this was suitable for a first-
generation AFPGA, modern reconfigurable
fabrics have clustered logic blocks containing
multiple lookup tables per logic block. This
choice results in significantly reduced routing
requirements, as larger sections of logic can be
mapped to a single logic block without resorting
to the global routing network. The result of this
analysis was that our new AFPGA architecture
contains four four-input lookup tables per logic
block. A second major change was made in the
design of the function unit. In the original
AFPGA (as in conventional synchronous FPGAs
from Xilinx/Altera) the lookup table that is part
of the function unit is re-used to implement a

Figure 5. Original AFPGA Logic Block.

Figure 6. Logical configuration of the core of

the new AFPGA logic block.

11

ripple-carry adder by the introduction of some support logic (exclusive OR gates).
Instead of this, our new AFPGA design uses dedicated hardware adder structures that
share inputs with the lookup table. The logic block can either be configured to use the
lookup table, or configured as an adder. The benefit of this approach was that carry
chains in our architecture are twice as fast, because the adder block can be designed to
perform two bit additions in a single stage rather than just a one-bit addition. Figure 6
provides a logical view of the new AFPGA logic block core. Each block can be thought
of as two halves, each containing two four-input lookup tables, a two-bit adder, and a
conditional unit containing the split and merge dataflow elements.

The internal connectivity supported by the logic block is significantly enhanced
compared to the original AFPGA architecture. Inputs arriving from the switch box are
connected to the input connection box. This connection box provides simple point-to-
point connectivity that allows inputs to be connected to a small number of dedicated input
channels for the overall logic. This is followed by an input cross-bar with copying
support, which converts the small number of inputs from the switch box into a set of
inputs for each half of the AFPGA logic core (Figure 6). Copying support in this cross-
bar allows a single input from the routing fabric to be copied to multiple input pins of the
logic core. After passing through the logic core, the output of the logic block can also be
copied to multiple destinations by the output copying block, and this is followed by the
output connection box that provides connectivity back to the global routing network.
Figure 7 is a block diagram that describes the overall logic block with the local routing
network support. Another interesting feature of the new AFPGA architecture is the
generality of feedback connections that are available. Outputs from the logic core can be
fed back into the input cross-bar, enabling general connectivity within the logic core
itself. Finally, the logic block contains a number of buffers that are used to decouple
different parts of the design and increase throughput through pipelining.

Each AFPGA tile also contains meta-configuration bits that can be used to protect
various parts of the configuration space of the tile. In the completed version of the
AFPGA, the configuration architecture assumes that each logic block can only be
configured for one function; on a change, either no elements within a logic block are
impacted or all the elements in the logic block are impacted. This simplification reduces

Figure 7. Internal connectivity provided by the AFPGA logic block.

12

the meta-configuration bit overhead, keeping it at ≈1% when both the configuration bits
for routing and logic are taken into account.

3.2. Dynamic Reconfiguration Ability

The new AFPGA routing network contains significant support for dynamic
reconfiguration. Apart from the per-logic block configuration support described above, an
important consideration in the design of the AFPGA was configuration support for
routing. Meta-configuration bits were designed to allow a small group of tracks to be re-
configured without impacting existing configurations of adjacent tracks.

Figure 8 provides an illustration of the reconfiguration support provided in the new
AFPGA. The figure on the left corresponds to a configuration where the blocks
highlighted in green correspond to some computation mapped to the AFPGA, and the
blue path is configured to connect a source to a destination. The new configuration
preserves the configuration in green, but changes the source-destination path to the one
shown on the right. The meta-configuration bits are organized so as to support this level
of dynamic reconfiguration. Observe that the new path occupied by the blue routing track
utilizes resources that are physically adjacent to the green configuration. This is made
possible by the meta-configuration bits, as only the configuration corresponding to the
blue path is modified.

The value of the meta configuration bits are a global mask which identifies the parts of
the AFPGA fabric impacted by reconfiguration. The key difference between meta
configuration bits and other possible mechanisms (e.g. using bit-addressable
configuration memory) is that the meta bits group configuration information into logical
units that are meaningful from the standpoint of dynamic reconfiguration. Meta-
configuration bits are also grouped into words of a size that corresponds to the normal
granularity of the configuration memory organization. By writing the appropriate meta-

Figure 8. An example of supported routing re-configuration in the AFPGA.

13

configuration bits, the appropriate subsets of ordinary configuration bits are selected for
modification. The update pictorially depicted in Figure 8 would proceed as follows:

 Step 1. All meta-configuration bits would be cleared, thereby preventing any
configuration modifications.

 Step 2. The meta-configuration bits corresponding to the original and new blue
route are set, thereby enabling modifications to the configuration bits controlling
all the gates impacted by the route change.

 Step 3. The configuration bits are updated. While full configuration word writes
are attempted, the masking due to meta-configuration bit values ensures that only
the appropriate subset of configuration information is modified.

 Step 4. The route is initialized by following the reset protocol for the
asynchronous logic. Once again, meta configuration bits are used to ensure that
only the new route is initialized. The green configuration is not impacted by the
reset protocol.

3.3. AFPGA Configuration Memory and Security

The previous AFPGA design used a shift register chain to implement the configuration
memory. Unfortunately, a shift register chain is very inefficient from the standpoint of
area. The new AFPGA architecture uses a modified static memory cell as the core
configuration storage element to minimize the amount of area required for configuration
bits. This is similar to the approach taken in commercial FPGA implementations [8].

There are a number of unique challenges when designing a configuration memory cell. It
may seem that a standard static random access memory (SRAM) can serve the function
of configuration memory. However, there are a number of requirements for a
configuration memory storage element that differ from those of a standard SRAM bit
cell.

A traditional SRAM bit cell has to operate correctly only in an array environment.
Reading and writing the bit is performed through shared lines, and hence the capacitive
loading on various access ports for a standard SRAM is well-defined and deterministic.
Apart from edge effects (that sometimes require dummy SRAM cells to surround the core
memory array), bit-cells have an identical—or at least very predictable—environment.

FPGA configuration memory is used to control gate voltages on pass transistors. This
control voltage is required at all times—which means that all the bits of configuration
memory need to be accessed continuously, and in parallel. To simplify the design of the
AFPGA configuration memory, isolation buffers were introduced between the stored
configuration bit and the pass transistor gates so that a dense configuration memory bit
cell would have a deterministic electrical environment. Wiring considerations imply that
area-optimized FPGA layout places configuration memory bits near the locations where
they are used. Therefore it is impractical to create large, dense configuration memory

14

arrays—since each bit needs at the very least a wire that connects it to the appropriate
pass transistor gate. The AFPGA configuration memory was organized in very small
arrays that were placed near the locations where their values were needed. This
observation also means that the configuration memory bits cannot use high-density
foundry SRAM cells, because foundry cells require that the bits be organized in a dense
array configuration.

The AFPGA uses approximately 1Kbit of configuration memory per four input lookup
table. Of this total storage requirement, only sixteen bits are required for the lookup table
configuration; the rest correspond to the average cost of configuration information for
routing. Even a modest AFPGA size (e.g. 1024 LUTs) requires a configuration memory
of the order of 1 Mbit! However, the bits of this memory are not organized in a densely
packed configuration as discussed earlier, but look more like a sparse array that logically
behaves as a normal SRAM. The result is that the AFPGA configuration memory
requires much longer bit lines and word lines compared to a traditional SRAM that has
the same total storage.

To handle the cross-talk and coupling issues created by the long word and bit lines, the
AFPGA configuration memory is partitioned into smaller banks, with local drivers placed
periodically throughout the AFPGA array. Critical parameters that govern the read and
write margins in the AFPGA configuration memory are therefore isolated to a small
physical region sized to maximize robustness for a reasonable area budget.

Meta configuration bits are also organized in the same manner as ordinary configuration
bits. A fixed section of the address space of the configuration memory was allocated for
meta-configuration information. Operations on meta-configuration bits were identified by
comparing a subset of the address bits to a fixed value corresponding to the meta-
configuration address space.

Reads and writes to ordinary configuration bits were gated by the appropriate meta-
configuration bits. Each AFPGA tile contains meta-configuration bits that control
ordinary configuration bits within the tile. The overall area overhead of this scheme was
found to be ≈1%. Reads and writes to configuration bits that are not enabled (because
their meta-configuration bits are clear) are ignored; this effectively write-protects any
configuration bit that is protected through the meta-configuration information.

Since meta-configuration bit addresses are easily identified externally, memory address
protection mechanisms can be used to protect not just meta-configuration bits but
ordinary configuration bits. To write-protect any AFPGA configuration, the following
steps can be followed:

1. Set the meta-configuration bits so that reads and writes to the appropriate
ordinary configuration bits are disabled.

2. Place the system in a mode that disables any modifications to the meta-
configuration bits.

At this point, any writes to AFPGA configuration memory will not modify the protected
configuration information. Write protection of the meta-configuration bits is supported by

15

a single input signal to the AFPGA array. Reading the configuration memory can also be
disabled by another input pin to the AFPGA. By disabling reads and writes through a
secure path, the current configuration of the AFPGA can be protected from an external
attacker.

3.4. AFPGA Interface Circuits

Integrating an asynchronous FPGA with standard synchronous logic requires an interface
circuit to manage the potential metastability that can arise when an asynchronous signal
change violates setup/hold time requirements of the clocked state-holding element.

The circuit used for the AFPGA
designed for this project was a variant
of a conventional two-flop synchronizer
[12]. The basic principle behind a two-
flop synchronizer is shown in Figure 9.
A signal from the sender passes through
two flip-flops that are clocked by the
receiver. The first flip-flop could have
its setup or hold time violated, and so its
output could be metastable. However,
this metastable state has an entire clock
cycle to resolve itself before being

examined by the receiver [13]. This approach provided sufficient margin for the AFRL
design given the operating frequencies and underlying process technology.

Another requirement of a synchronization interface that must be ensured is that multiple
values cannot be transmitted while the synchronizer is in a metastable state. This
particular problem was handled by providing full flow control between the sender and
receiver in the circuits designed for the AFPGA [12].

3.5. Circuit Changes

The AFPGA circuits were updated and ported to the 65nm process technology used for
this project. These changes involved evaluating analog properties of the asynchronous
circuits to ensure that the circuits continued to conform to the digital abstraction. This
evaluation impacted the overall transistor sizes of the circuits, and in some cases required
re-design to ensure that large loads were driven with the appropriate circuit family.

There were two major changes that were made to the circuits in the AFPGA. First, the
lookup table logic was modified so that its inputs used one of four encoding rather than
dual rail encoding. This reduced the number of transistors in series required to implement
the logic stack for the lookup table, and improved the power and performance of the

Figure 9. Basic two-flop synchronizer.

16

circuit. The second major change was more global, and involved the introduction of
power gating transistors in the AFPGA architecture.

Power gating was introduced as a means to control the leakage current when sections of
the AFPGA are unused. Since configuration information determines which parts of the
AFPGA circuit are in fact active, additional configuration bits were used to control
power-gating transistors connected to the power supplies for different sections of the
AFPGA. Fine grained power gating enables small clusters of logic to be gated off,
thereby providing leakage management when the AFPGA is underutilized. Note that
power gating transistors provide another mechanism for disabling AFPGA functionality.
Hence, the configuration bits used to control power gating must also be protected when a
configuration must be locked down.

3.6. Physical Implementation

The physical design of the AFPGA was undertaken using a combination of commercially
available layout editors as well as a custom-designed tool to automate some of the
physical design process. The newly developed “layout assistant”, called “pandR” (for
place and route), was created to simplify some of the aspects of creating the physical
layout for the AFPGA.

The input to pandR is a SPICE netlist that contains transistors and their widths and
lengths. The input is hierarchical, and the input hierarchy is used to create the layout
hierarchy. The other input to the tool is a technology description file that contains all the
necessary information required by the tool to create design rule clean layout.

On startup, the tool creates a hierarchical graph representation of the layout that has to be
generated. Transistors are grouped into stacks that correspond to contiguous regions of
diffusion in the physical layout. Each stack is assigned a default position, and they are
grouped based on the gate they correspond to and the type of transistor they contain (p-
type or n-type).

The placement algorithm used is a variant of quadratic placement with the goal of
minimizing the potential energy of the stacks [15]. Unlike traditional physical automation
tools that create a placement for all the layout elements and then follow that by routing all
the wires, pandR routes partial nets while placement is being performed.

The main loop that the tool executes can be described as follows:

1. Build a matrix for the quadratic solver, including all previously placed stacks,
unplaced stacks, and I/O pins.

2. Solve the quadratic equation and assign all unplaced stacks a position.

3. Pick a stack to place, and legalize its position so that all design rules are satisfied.

4. Run the router to draw wires that may have been erased due to previous steps.

17

This continues until either all stacks have been placed, or until the tool cannot complete a
step without violating design rules.

Figure 10 shows a screen shot of the layout assistant for a simple circuit used to
implement a queue. One of the more unique features of this tool is that the I/O pins
(shown as black circles) of a circuit can be placed in the interior of the layout region
rather than just on the boundary, and a signal can have multiple I/O pins allowing for
external connections at different location when performing hierarchical layout.

Dense layout cannot typically be fully automated using a simple set of algorithms. Often
user input is required to identify opportunities for optimization that, to date, have eluded
automated approaches. To support this, pandR has a number of commands that can be
used to modify any layout and use automated support only when it is appropriate. In this
sense pandR can be thought of as a much more sophisticated layout editor where the
primitive operations are the same as a tool such as Virtuoso from Cadence. The
difference is that the tool also includes support for automated stack generation,
placement, and routing and a user can pick and choose what automation support they
desire.

Figure 10. Screenshot of the pandR layout assistant.

18

An important feature of pandR is that all commands and actions of a user of the tool are
captured in a script. This script can be “re-played” to re-create the physical layout. This
replay procedure is deterministic, and captures a mixture of command-line operations as
well as interactive commands (for example, drag and drop of part of the layout). Every
operation that modifies the layout is captured in a file so that the layout creation process
is reproducible.

For more complex circuits that are hierarchical, the tool is able to layout each sub-circuit
individually and then combine those layouts into a higher level module. The sub-circuits
are “grey boxed” and placed as individual components, whereas wire routing is aware of
the internal geometry of the sub-circuit.

Figure 11 shows a screenshot of the physical layout of the AFPGA. The tile consists of
two sections that are approximately equal in size. The left hand side of the tile
corresponds to the internals of the logic block, including the lookup tables, arithmetic
functions, and internal tile routing. The right hand side of the tile consists of the pipelined

Figure 11. Physical layout of an arrayable tile of the new AFPGA.

19

interconnection network for intra-tile routing. The area of the tile used by logic functions
is ≈10%, with configuration memory using ≈30% of the area and the rest being used by
the routing network.

There were a number of design issues that required detailed analysis of analog effects by
circuit simulations that modeled parasitic resistances and capacitances. While large
simulations that contain accurate models are beyond the scope of existing commercial
tools, simplified but conservative models were used to ensure robust functionality of the
final AFPGA. Many changes to the underlying circuits were made based on these
simulations, including partitioned wires for the configuration memory and appropriate
spacing and shielding for the interconnect lines in the AFPGA.

Extensive SPICE simulations predict that the peak performance of this AFPGA is in the
range of 800 MHz. This frequency was chosen based on the performance of the rest of
the system (below 150 MHz) that will include the AFPGA fabric. The total number of
AFPGA tiles in the system can be changed easily by simply creating an array of the
appropriate size.

The edge of the tile contains interface circuits as well as programming support for the
configuration memory. This interface exports a synchronous interface to the rest of the
system for easy integration with commercial physical design flows. With help from Prof.
Stine of Oklahoma State University, a flow was created that enabled the entire physical
AFPGA block to resemble a synchronous IP block that was placed and routed with
Cadence Encounter.

In collaboration with AFRL, the final physical implementation was submitted for
fabrication through the Trusted Foundry Access Program to IBM’s foundry services.

4. Summary
Previous research on asynchronous FPGA architectures at Cornell resulted in the
development of a new high performance reconfigurable fabric. This funded effort
transitioned the new technology to a sensitive AFRL project that combined general-
purpose computing and reconfigurable logic for cognitive information processing
applications. In a joint development effort, a large 65nm chip was created with AFRL
contributing portions of the design and Cornell contributing a high-performance
asynchronous FPGA. For suitability for cognitive operations, the AFPGA was designed
to support dynamic reconfiguration and virtualization of its resources. Additional features
were introduced to enable the AFPGA configuration to be trustworthy even if the system
design was compromised. A chip to demonstrate the new architecture was submitted for
fabrication through the Trusted Foundry Access Program. A follow on project was begun
to update the design tools for a 32nm fabrication process design flow and add new
security features for inclusion in a future design.

20

5. References

[1] J. Martinez, C. Gomes, R. Linderman. Research Gap Analysis Report. Workshop on

Research Directions in Architectures and Systems for Cognitive Information Processing,
July 2005.

[2] John Teifel and Rajit Manohar. Programmable Asynchronous Pipeline Arrays.
Proceedings of the 13th International Conference on Field Programmable Logic and

Applications, Lisbon, Portugal, September 2003.

[3] John Teifel and Rajit Manohar. Highly Pipelined Asynchronous FPGAs. 12th ACM

International Symposium on Field-Programmable Gate Arrays, Monterey, CA, February
2004.

[4] David Fang, John Teifel, and Rajit Manohar. A High-Performance Asynchronous
FPGA: Test Results. 2005 IEEE Symposium on Field-Programmable Custom Computing

Machines, April 2005.

[5] Xilinx. VirtexTM 2.5V field programmable gate arrays. Xilinx Data Sheet, 2002.

[6] J. B. Dennis. The evolution of ’static’ data-flow architecture. In J.-L. Gaudiot and L.
Bic, editors, Advanced Topics in Data-Flow Computing. Prentice-Hall, 1991.

[7] Song Peng, David Fang, John Teifel, and Rajit Manohar. Automated Synthesis for
Asynchronous FPGAs. 13th ACM International Symposium on Field Programmable

Gate Arrays, February 2005.

[8] I. Kuon, R. Tessier, J. Rose. FPGA Architectures: Survey and Challenges.
Foundations and Trends in Electronic Design Automation, Vol. 2, No. 2, pp. 135-253,
2007.

[9] John Teifel and Rajit Manohar. Static Tokens: Using Dataflow to Automate
Concurrent Pipeline Synthesis. Proceedings of the 10th International Symposium on

Asynchronous Circuits and Systems, April 2004.

[10] Jon Russo, Mohammed Amduka, Keith Pendersen, Richard Lethin, Jonathan
Springer, Rajit Manohar, Rami Melhem. Enabling Cognitive Architectures for UAV
Mission Planning. Proceedings of the High Performance Embedded Computing

Workshop, September 2006.

[11] I. Kuon and J. Rose. Measuring the Gap between FPGAs and ASICs. IEEE

Transactions on Computer-Aided Design of Intergrated Circuits and Systems, Vol. 26,
No. 2, February 2007.

[12] Cadence Design Systems. Clock Domain Crossing: Closing the Loop on Clock
Domain Functional Implementation. Technical paper, 2004.

http://vlsi.cornell.edu/~teifel/
http://vlsi.cornell.edu/~rajit/
http://vlsi.cornell.edu/~teifel/
http://vlsi.cornell.edu/~rajit/
http://vlsi.cornell.edu/~fang/
http://vlsi.cornell.edu/~teifel/
http://vlsi.cornell.edu/~rajit/
http://vlsi.cornell.edu/~speng/
http://vlsi.cornell.edu/~fang/
http://vlsi.cornell.edu/~teifel/
http://vlsi.cornell.edu/~rajit/
http://vlsi.cornell.edu/~teifel/
http://vlsi.cornell.edu/~rajit/
http://vlsi.cornell.edu/~rajit/

21

[13] R. Ginosar. Fourteen ways to fool your synchronizer. Proceedings of the IEEE

International Symposium on Asynchronous Circuits and Systems, May 2003.

[14] R. Manohar. Systems and methods for performing automated conversion of
representations of synchronous circuit designs to and from representations of
asynchronous circuit designs. US Patent 7,610,567, October 2009.

[15] B. Hu, M. Marek-Sadowska. Multilevel fixed-point-addition-based VLSI placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
24, No. 8, 2005.

22

6. Acronyms

Acronym Expanded Form

ACT Asynchronous Circuit Tools

AFPGA Asynchronous Field Programmable Gate Array

AFRL Air Force Rome Laboratories

CB Connection box

DARPA Defense Advanced Research Projects Agency

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

I/O Input/Output

IP Intellectual Property

LB Logic block

LUT Lookup Table

SB Switch box

SRAM Static Random Access Memory

VHDL Very High Speed Integrated Circuit Hardware Description
Language

VLSI Very Large Scale Integration

